Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0381120160380100967
Genes and Genomics
2016 Volume.38 No. 10 p.967 ~ p.976
High genetic variation among closely related red oak (Quercus rubra) populations in an ecosystem under metal stress: analysis of gene regulation
Makela M.

Michael P.
Theriault G.
Nkongolo K. K.
Abstract
Metal toxicity is a major abiotic stressor of plants. It has been established that changes in genetic variation occur very rapidly in plants in response to environmental stressors such as increased levels of metals. Quercus rubra (red oak) is a pioneer species in mining regions contaminated with metals in Northern Ontario (Canada). The objectives of the study were to (1) determine the level of genetic variation in Q. rubra populations from mining damaged ecosystems using RAPD marker system and (2) assess the level of gene expression of candidate genes for nickel resistance. Total gene diversity (HT) and the mean gene diversity among populations (HS) were 0.22 and 0.19, respectively. The percent of polymorphic loci within populations was high ranging from 61 % (Capreol) to 72 % (Daisy Lake) despite a high level of gene flow (2.4). The population differentiation (GST) value was low (0.17). No significant difference was found among the contaminated and reference sites for all the genetic parameters estimated. Hence, all the Q. rubra populations from the metal-contaminated and damaged ecosystems are genetically sustainable. Moreover, this study reveals that all populations were genetically closely related with genetic distance values varying from 0.17 to 0.35. A zinc finger protein of Arabidopsis thaliana (ZAT11) gene involved in nickel resistance was differentially expressed in samples analyzed. There was a 120 times higher of ZAT11 expression in samples from metal contaminated areas of Wahnapitae Dam compared to other metal contaminated and uncontaminated sites, but no association between soil metal levels and expression of ZAT11 was established.
KEYWORD
Metal contamination, Nickel, Zinc, Genetic variation, Gene expression, Quercus rubra, Northern Ontario
FullTexts / Linksout information
Listed journal information
SCI(E) ÇмúÁøÈïÀç´Ü(KCI)